TTCN-3 Quality Engineering: Using Learning Techniques to Evaluate Metric Sets

Edith Werner, Jens Grabowski, Helmut Neukirchen, Nils Röttger, Stephan Waack, and Benjamin Zeiss

> Institute for Computer Science University of Göttingen

- Motivation
- Evaluating Metric Sets
- TTCN-3 Experiments
- Summary and Outlook

"To measure is to know." Lord William Kelvin, 1824-1907

Metrics

- A metric captures a quality aspect of the software
 - Computation rule
 - Counting
 - Basic arithmetics
 - Threshold
- Metrics are combined into quality models to capture all relevant quality aspects

Metric Sets

- Tradeoff:
 - Less metrics, less information
 - More metrics, more costs
- Ideally:
 - Measure as much as necessary but as little as possible.

How to determine an optimized metric set?

Motivation

Evaluating Metric Sets

- TTCN-3 Experiments
- Summary and Outlook

Basic Idea

Given: a set of metrics with thresholds

 Find a subset that yields the same overall classification

 Adapt the metrics thresholds to achieve this

Learning Procedure

- Select software entities and classify them using the original metric set
- Randomly divide the data into three sets
- Training set
 - Generate adapted threshold for each possible metric subset
- Validation set
 - Compute the error of the adapted metric subsets
- Test set
 - Compute the error of the best subset

Edith Werner, University of Göttingen

- Motivation
- Evaluating Metric Sets
- TTCN-3 Experiments
- Summary and Outlook

Data

Testing and Test Control Notation Version 3

- Session Initiation Protocol (SIP) test suite
- Internet Protocol Version 6 (IPv6) test suite
- TTCN-3 Metrics
 - Number of statements
 - Cyclomatic complexity
 - Maximum Nesting Level
 - Maximum Call Depth

Scenarios

- Scenario 1: Strict Classification
 - All four metrics must classify the software as "good"
- Scenario 2: Relaxed Classification
 - At least three of the metrics must classify the software as "good"
- Metric subsets
 - One of four
 - Two of four

Experimental Results

The approach works

- Case Study
 - A set of four metrics can be approximated by a subset of two metrics with a test error of 1.94 %
 - The best approximation uses the threshold values that were used to generate the original classification

Negative data is needed to prevent overfitting

- Motivation
- Evaluating Metric Sets
- TTCN-3 Experiments
- Summary and Outlook

Summary and Outlook

Summary

- Learning techniques can be used to optimize metric sets
- The approach is applicable to TTCN-3
- Outlook
 - Apply the technique to Java and UML
 - Optimization of the algorithm for usage with larger metric sets

Thank you for your attention!