Consistency of UML/SPT Models

Abdelouahed Gherbi and Ferhat Khendek Concordia University Montreal, Canada

Outline

- Introduction
- Issues
- Background
- □ Framework for UML/SPT models consistency
- □ Concurrency-related Consistency
- □ Time Consistency
- Conclusions

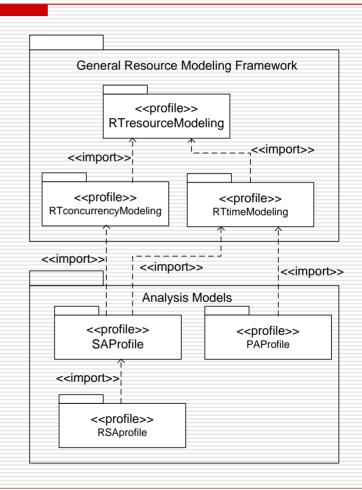
- Embedded real-time systems (ERTS) are used in a large set of applications
- ERTS functionality is increasingly software based
- □ It is also increasingly complex
- Low-level optimization techniques of code are no more enough

- Modeling is a fundamental engineering activity
- Models of high-level of abstraction
 - Increase the visibility and control over systems complexity.
 - Help in understanding the problem
 - Communicate
 - Reason about the model
 - Automate (verification, implementation synthesis)
- Model-driven engineering approach:
 - MDA
 - UML, MOF, QVT, XMI, etc.

- UML: de facto Standard software modeling language.
- UML is intuitive because it is a visual language.
- UML adopt a multi-view modeling approach
 - Provides many modeling elements and diagrams
- UML is adaptable and customizable
 - Profiles or domain specific modeling languages
- ☐ However, UML faces the consistency issue
 - Lack of formal semantics
 - Multi-view approach

- ☐ UML can be used to model real-time systems
- UML profiles for embedded and RT systems
 - UML/SPT
 - MARTE
- Real-time software systems have in addition specific characteristics
 - Time constraints
 - Concurrency
- Consequently, the consistency issue is more complex in UML models of ERTS

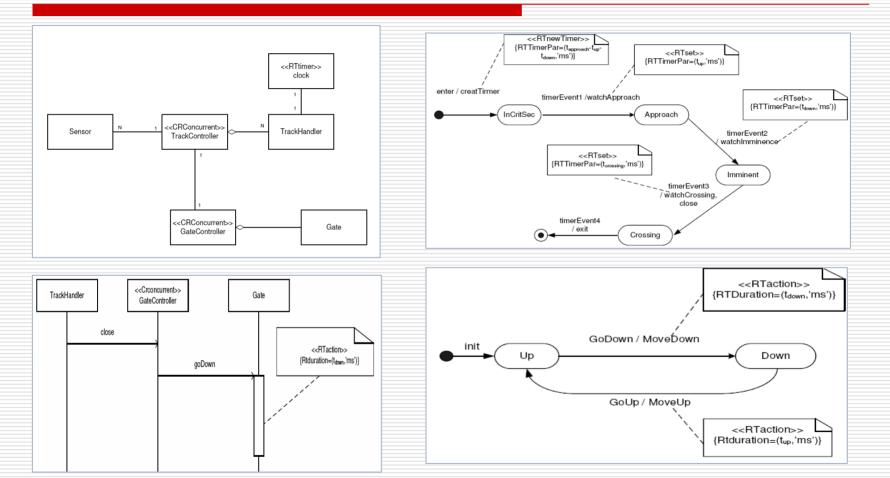
- In this paper
 - Focus on a general definition of the consistency issue in UML/SPT models.
- Contributions
 - A framework addressing incrementally the consistency issue of UML/SPT models
 - Focus on the time consistency using an approach based on schedulability analysis


Background

- UML/SPT: UML profile for Schedulability, Performance and Time.
- OMG current standard and it is being updated (MARTE)
- The objective: Construction of predictive UML models Introduce quantitative information in the models and predict key properties (timing) early before any costly implementation.
- UML/SPT provides:
 - □ A set of domain models encapsulating the concepts resource and quality of service; time; concurrency; performance; and schedulability modeling.
 - □ Is mapped to UML through a set of stereotypes to annotate its UML models.

Background

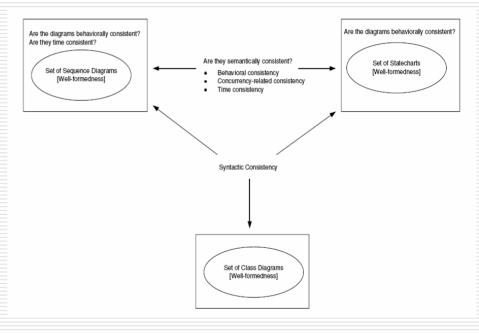
- General resource modeling framework
 - Resource and QoS
 - Concurrency
 - ☐ Time and time-related mechanisms
- Analysis modeling
 - □ Schedulability analysis
 - Performance analysis


Background

□ Sample of UML/SPT Stereotypes

Streotype	Applies to	Tagged values
< <rtaction>></rtaction>	Action, Actionexecution,	RTstart, RTend
	Message, Method	RTduration
< <rtevent>></rtevent>	Action, Actionexecution,	RTat
	Stimulus, Message	
< <rttimer>></rttimer>	Instance, Object	RTduration
		RTperiodic
< <crsynch>></crsynch>	Action, ActionExecution	
< <saaction>></saaction>	Action, Actionexecution,	SAPriority
	Stimulus, Message,	SAWorstCase
	Method	SAAbsDeadline
< <saengine>></saengine>	Node, Instance, Object	SAschedulingPolicy
		SAContextSwitch
		SAPriorityRange
< <saresource>></saresource>	Node, Instance, Object	SAptyCeiling
	-	SApreemptible
	<u> </u>	

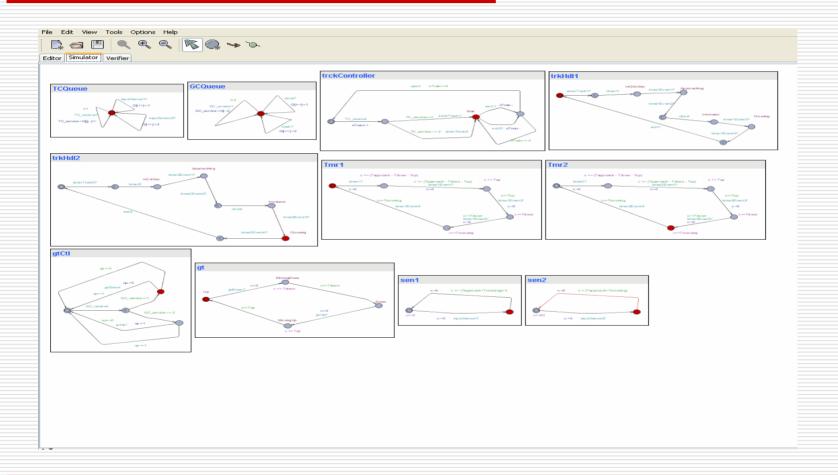
Example


Framework for UML/SPT models consistency

- ☐ UML/SPT model is:
 - A UML model → several UML diagrams
 - Capture RT relevant features (Time constraints, concurrency) using stereotypes cross-cutting the different UML diagrams.
- What is a consistent UML/SPT model?
 - No straightforward definition.
 - Incremental approach is appropriate.

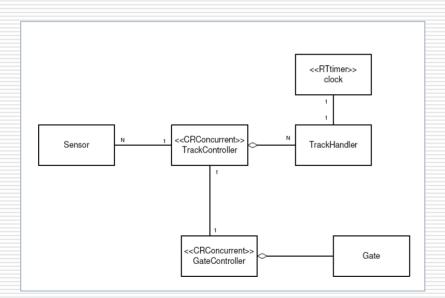
Framework for UML/SPT consistency

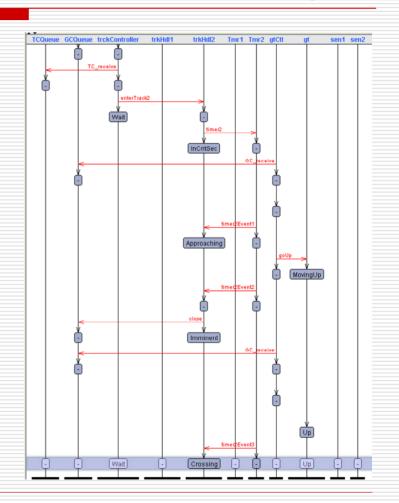
- One way to consider this question is to an incremental approach
- Syntactic level
 - Static property
 - Intra diagram:
 - Well-formedness rules in OCL
 - Inter-diagram
- Semantic Level
 - Dynamic property
 - Behavioral consistency: Interdiagram consistency used for behavior modeling (sequence diagrams, statecharts)
 - Concurrency-related consistency
 - Time Consistency
 - Logical time consistency
 - System time consistency



Concurrency-related consistency

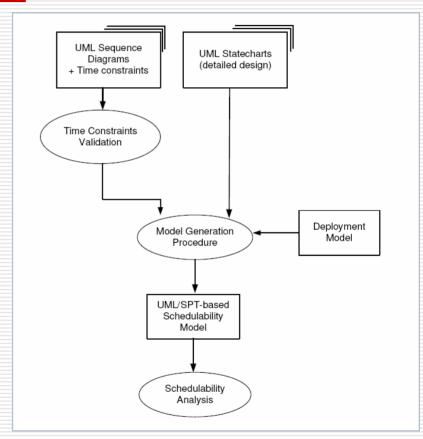
- Focus on the concurrency choices expressed using UML/SPT stereotypes
- ☐ Design choices in terms of concurrency allow for an efficient resources use and to meet the time constraints.
- But, may lead to issues (e.g., deadlock and race conditions)
- UML/SPT
 - defines a concurrency domain model
 - provides a set of stereotypes to use on a UML model
- □ Timed automata semantics for this concurrency domain model
- Model checking techniques can then be used to check a UML/SPT model and detect concurrency related issues.


Concurrency-related consistency

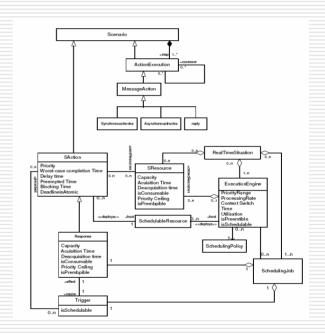


Concurrency-related consistency

∃◊((TrkHdl1.Crossing or TrkHdl1.Crossing) and gt.Up)


Time Consistency

- Focus on the time constraints expressed with UML/SPT time stereotypes.
- □ Two particular distinctions:
 - Logical time consistency of sequence diagrams
 - System time consistency (sequence diagrams, statecharts and deployment constraints)


Approach:

- Use schedulability analysis to check time consistency of statecharts with sequence diagrams
- Generation an UML/SPT model for schedulability analysis from:
 - □ A set of sequence diagrams (each one is assumed to model a time constraints on an end-2-end system transaction)
 - □ A set of statechart: The detailed design that should satisfy the time constraints considering the deployment model
 - A deployment model: Information on the CPU characteristics, threads, priorities, WCET, etc.

- UML/SPT SA model generation
- UML/SPT can be used to support schedulability analysis.
- This is achieved using the SAProfile package.
- This define a SA domain model and a set of stereotype

- UML/SPT SA model generation procedure
- Input: SeqD <0, E, V,Label> be a sequence diagram $SC = \{o_i.sc | \forall o_i \in O\} \text{ be a set of associated statecharts}$

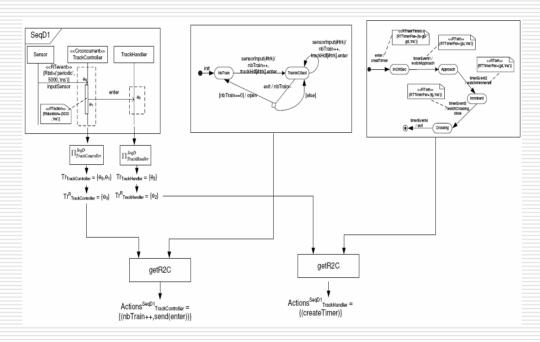
```
for all o_i \in O do

Step 1.1: Event partition

let tr_{o_i} \leftarrow \Pi_{o_i}^{SeqD} = \{e_{o_{i1}}, e_{o_{i2}}, ..., e_{o_{im}}\}

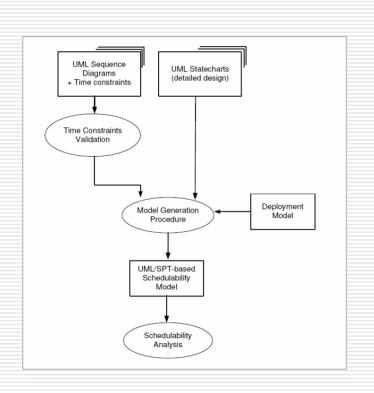
Step 1.2: Event restriction to receptions

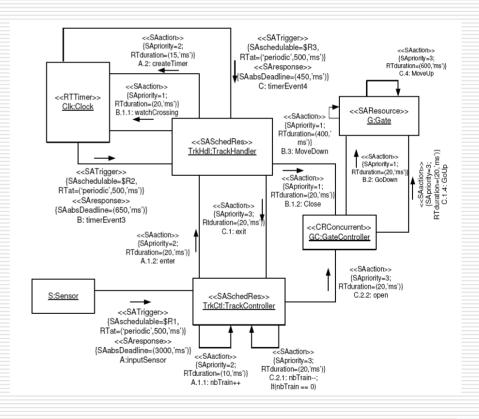
let tr_{o_i}^R \leftarrow tr_{o_i} \cap R = \{e_{o_{i1}}^r, e_{o_{i2}}^r, ..., e_{o_{ik}}^r\}


Step 1.3: Run to completion steps

let Action_{o_i} \leftarrow \cup_{j \leq k} \{getR2C(o_i.sc, e_{o_{ij}}^r)\}
end for
```

- Step 4: for all $a_i \in Actions$ do let $(a_i.wcet, a_i.priority, a_i.thread, ...) \leftarrow deploys(a_i)$ end for




■ Example

Generated UML/SPT SA model

Conclusion

- An UML/SPT model is a UML model enriched with RT aspects such as time constraints and concurrency
- UML/SPT model consistency is challenging
- □ A straightforward definition is difficult
- An incremental approach is more appropriate
- Schedulability analysis of UML/SPT model can be used to check time consistency of statecharts with sequence diagrams

Thank you!

