
Verification of model based
design

Emmanuel Gaudin has a technical
background and developed protocol stacks in
SDL. He joined a modeling tool vendor in 96
as a Field Application Engineer and as a
trainer to finally become technical director of
the French branch. Based on that experience,
he started PragmaDev in 2001 to develop an
SDL-RT tool.

This paper will remind the basics of model driven
engineering and how to determine if a modeling
language is a good candidate. Based on that analysis, a
formal verification technique will be explained and
illustrated with an SDL model.

Model Driven development
Model Driven Engineering is an approach of software
development based on abstract models of a system to
be developed. Three types of models are used in a
model driven approach:

● an abstract model of the system under
development called the Platform Independent
Model (PIM),

● a Platform Definition Model (PDM),
● an implementable model of the system called

the Platform Specific Model (PSM).
The PIM is basically the system under development and
the PDM defines the rules in order to transform the PIM
into a PSM. In practice the development team works on
the PIM, the PDM is defined by the application domain or
the company, and the PSM is automatically generated
out of the PIM and the PDM.

For that process to be efficient, the PIM must be abstract
enough to be independent from the platform on which
the system will be implemented, but at the same time it
should be precise enough to be translated to a PSM. So,
in order to be able to successfully translate the model,
the PIM relies on a virtual machine which characteristics
are:

● a number of basic services,
● strong enough semantics to be expressive.

SDL: model driven from the start
In the 80's, the International Telecommunication Union
(ITU) has standardized a language to describe
telecommunication protocols: the Specification and
Description Language (SDL) under reference Z.100. The
main goal was to describe the protocols in an
unambiguous way so that all manufacturer's
implementation of a standard protocol are compatible
with each other. European Telecommunication
Standardization Institute has extensively used SDL to
describe telecommunication standards and it is obvious
to state the compatibility issue has been successfully
achieved. Most of the Telecommunication manufacturers

have used SDL to design their software and have
measured it increased quality by a ratio of 5 and reduced
the overall development time by 35% in average.
Technically speaking, SDL is an abstract, event driven,
object oriented, graphical language, with strong
semantics of execution, and embedded Abstract Data
Types. Because it embeds data types and a syntax to
manipulate them, SDL models are formal (complete and
non-ambiguous). An SDL model can be fully described
because of that characteristic but it does not have to be.
So depending on the level of precision within the model,
an SDL system can be informal or very precise.
SDL built-in concepts
and services such as
processes, messages,
timers, and procedures
are supported by most of
the Real Time Operating
Systems making
implementation on a real
target straightforward.
The strong semantics of
SDL and its built-in
services describe an
SDL virtual machine on
which a model is based
on. That is actually the
main characteristic of
Platform Independent
Model (PIM). The
definition of possible
external operators, and
the implementation of the
SDL services provided
by the SDL virtual
machine are the actual
definition of the platform:
the Platform Definition
Model (PDM). From the SDL PIM and PDM, it is possible
to fully generate the Platform Specific Model (PSM) in an
executable language such as C code.

UML, a too generic modeling approach
In 1997, the Object Management Group (OMG)
standardized the Unified Modeling Language (UML), a
merge of different object oriented modeling approaches
coming from the database application domain. Versions
1.x of UML were too generic to support a Platform
Independent Model, so version 2 of the language
introduced the concept of profiles to make UML more
precise within an application domain. A profile allows to
introduce specialized concepts and some semantics
within a UML model. At the time, the OMG did not
standardized any profile, so UML 2 tools have introduced
their own profile -most of the time without documenting
it- making the models tied to the tools they have been
designed with, and tied to the underlying profile that was
used.
The ITU has taken this opportunity to standardize in July

Embedded Software Engineering Kongress Dec10, 2008 Page 1 / 3

PIM

PDM

PSM

2007 a UML profile for Telecommunication systems
based on SDL under the Z.109 reference.

SDL-RT from practice to standardization
Because UML is very abstract and informal, it is mostly
used in the early phases of the development process
when analyzing and setting the requirements on the
system. When it comes to coding, traditional textual
languages are at the same level as the SDL Abstract
Data Types. Because of its graphical abstractions
dedicated to Telecommunication systems, SDL is
positioned between the very generic UML and the very
specialized coding languages.
In practice, when using SDL, telecommunication
manufacturers were aiming at generating application on
target so that had a very pragmatic way of using it: they
wrote C code manipulating C data types instead of the
SDL data and syntax. When UML became popular they
started to mix the diagrams all together. SDL-RT came
from these industrial practices to combine UML, SDL,
and C or C++. It also introduced the semaphore concept
so that each service of a Real Time Operating System
has a dedicated graphical symbol.
SDL-RT can be seen as a UML 2 profile dedicated to
embedded and real time systems and it has all the
required characteristics of a PIM.

Principles of exhaustive simulation
One of the key interest of having a model based on
strong semantics is the possibility to execute it
independently from a real target. Based on the interface
of the system, it is possible to try all possible inputs.
Once all inputs have been tried in all possible order with
all possible values, that means all possible cases have
been tested. This is called exhaustive simulation and we
will describe the basic principles of this popular model
checking technique.

Global system state
It is important to first introduce the concept of global
system state: that is a complete picture of the overall
system. It combines the states of all finite state
machines, the values of their local variables, the values
of the object attributes, and the values of all global
variables. For a given global system state, a given input

will always produce the same result.

In the above simple example the global system
state is the state of the finite state machine and
the value of the only local variable: counter. The
combination of these two values fully describe

the system state.

When an input is applied to the system, its global system
state will change to a new one. Executing all possible
inputs on the system builds what is called a reachability
graph or a behavioral tree. One path in the tree is a
standard scenario.

Each incoming event leads the system to a new
global system state.

Considering embedded applications are usually multi-
threaded, a path from one global system state to the
next might be defined by a full transition (from one state

Embedded Software Engineering Kongress Dec10, 2008 Page 2 / 3

disconnected
counter = 0

connecting
counter = 0

connected
counter = 0

connected
counter = 0

connecting
counter = 1

connected
counter = 1

connecting
counter = 2

connected
counter = 2

connecting
counter = 3

call conReq

conConf connectingTimer

conConf connectingTimer

conConf connectingTim er

hangUp disReq

… …

hangUp disReq

… …

Language positioning

UMLUML

SDLSDL

CCC++C++ JavaJava

Analysis

Specification

Design

GUI Web Telecom Real
time

Real
time

UMLUML

SDLSDL

C
C++
C

C++

SDL-RT

to the next of a finite state machine) or by an atomic
instruction (because blocks of instructions can be pre-
empted by the RTOS). Of course, if a branch of the
reachability graph is an atomic instruction, that makes it
much larger than if based on full transition.
It is also important to notice that even a very simple state
machine might lead to a very large graph. For example a
one state automaton with a simple int on 16 bits will
generate 216 global system states with full transition
branches. That means it will not be possible to explore
all possible states on a real system because of the
combinational explosion.
In order not to execute several times the same branches,
all visited states must be remembered during an
exploration. To do so, mathematical techniques are used
such as hash tables that compresses the system
information to set a bit in a table. Whenever the same bit
is set there is a probability related to the size of the table
that it is the same state. Another way to reduce the
reachability graph is to cut branches in the tree. A simple
way to do so for example is to reduce the possible
values for some variables (for example instead of trying
all possible values for an integer, try 1, 5, 10, and 256).
That technique requires to master the system to be
checked in order to set the right values.

Observers
Each time a node in the graph is reached, static and
dynamic rules can be verified. A static rule is based on
the system state itself, for example the value of a state
combined with the value of a variable. Where a dynamic
rule is based on the evolution of the system states, so it
can be a piece of a scenario: for example it is not
possible for one of the state machine in the system to go
directly from the disconnected state to the connected
state.

The static rules, the dynamic rules, and the rules to
restrict the graph are described in an observer. It is
basically an automaton that is evaluated every time a
new state is reached. It has access to all internal
information (states, variables and others) and decides
either one of the rules have been violated, if the branch
should be cut, or if the exploration should go on.

The same technique can be used to generate test suites.
In that case, the observer defines the test objectives and
the exhaustive simulation will find all possible scenarios
to get to the objectives.

Conclusion
Model checking requires the model to be based on a
language with strong semantics in order to be able to
explore the reachability graph and verify as many rules
as possible. In the embedded domain, SDL is a good
candidate because it is a formal language with concepts
similar to the ones available in real time operating
systems.
Exhaustive simulation technologies have been around
for quite some time and have been proven to be efficient
on real industrial cases. In order to be more widely used,
it requires an easy to use tool, especially when it comes
to observers, and more over the time and expertise to
properly restrict the graph and define the rules.

Embedded Software Engineering Kongress Dec10, 2008 Page 3 / 3

Static rules verification

Dynamic rules verification

