

Asynchronous modeling in railway systems

emmanuel.gaudin@pragmadev.com

Different types of models

Models are targeting a specific goal:

- Requirements
- Architecture
- Specification
- Property verification
- Design

Different modeling technologies

SysML Requirements

AADL Architecture

ASN.1 Interfaces

SDL Functional behavior

Matlab Control laws

Lustre Logical control

B Mathematical predicates

Basic train systems

- Mainly binary information
- Logical operation

Open door if facing a platform

Needle position depending on train presence

Upcoming systems

ERTMS: European Rail Traffic Management System deals with:

- Speed
- Acceleration
- Communication

Needs

- Higher abstraction models
- Asynchronous high level representation
- Synchronous locally (GALS)

Solution

- > SDL models
 - Asynchronous semantic of execution
 - Executable => verifiable

Use SDL to describe the overall behavior

How does it relate to a local synchronous approach?

Specification and
Description Language
is an ITU-T
recommendation

Experiment

Radio Block Center from ERTMS recommendation

- Matlab model with synchronous state machines
- Translated to an SDL model with asynchronous state machines

Architecture

Inputs

Mapping the semantic

- Sensors are evaluated on a clock base, mapping of synchronous reading to asynchronous information is straight forward.
- Outputs might be sent to synchronous based designs, mapping of asynchronous information to synchronous signals is also straight forward.

Conclusion

The usual synchronous approach can be replaced by an asynchronous one:

Resulting models are functionally equivalents.

Asynchronous pros:

- Closer to the requirements.
- Easier to read.
- Handles large and complex systems.

Asynchronous cons:

- Difficult to verify but possible on a limited space.
- Not part of the cultural background.