
Automatic Interleaving for
Testing Distributed Systems

Mihal Brumbulli and Emmanuel Gaudin
PragmaDev

ERTS2

January 2016, Toulouse, France

Introduction
• Constant ever-growing interest for large-scale

distributed systems
– The Internet of Things interconnects billions of

smart objects

• Complex applications due to heterogeneity

and distribution scale
– Testing is not a trivial task

Motivation
• Operation of nodes is not isolated

– Test cases must account for the distribution and
interaction between nodes

• Existing test cases have to be adapted to consider

distribution
– Introduce concurrency handling into test cases

(need to modify existing test cases)
– Controlled concurrent execution that deals with all

relevant interleavings
(need to control execution, e.g., scheduler)

TECHNOLOGY

Specification and Description Language (ITU-T)
Unified Modeling Language (OMG)
Testing and Test Control Notation Version 3 (ETSI)

Structure & Behavior

Deployment & Test

INTERLEAVING

What are the effects of distributed execution of test cases?
Rewrite the test cases or execute them in parallel?
Can we simulate parallelism efficiently?

Problem
• Concurrent execution of 𝑲 test cases

– with 𝒏𝒊 instructions for 𝒊 = 𝟏,𝟐, …𝑲
– the number of all interleavings is

𝑰 =
∑ 𝒏𝒊𝑲
𝒊=𝟏 !

∏ 𝒏𝒊!𝑲
𝒊=𝟏

• Concurrent execution of 𝑲 instances of the same test case

– with 𝒏𝒊 = 𝑵 ∀𝒊 instructions
– the number of all interleavings is

𝑰 =
𝑲𝑲 !
𝑵! 𝑲

• Typical case of the state-explosion problem which makes execution of all

interleavings unpractical. However, …

Solution
• Not all interleavings are relevant

– Distribution may affect behavior only if there is an
interaction between nodes

– If the execution of a test case does not involve any
interaction, then distribution will not have any impact

• Interleave execution at critical points

– instructions that trigger interaction between nodes

• Group the instructions and then interleave execution of the groups
• Each group must include at most one instruction which triggers

interaction

𝒎𝟏
𝟎,𝒎𝟐

𝟏, 𝒎𝟑
𝟎, 𝒎𝟒

𝟏, 𝒎𝟓
𝟏, 𝒎𝟔

𝟎, 𝒎𝟕
𝟏, 𝒎𝟖

𝟎, 𝒎𝟗
𝟎, 𝒎𝟏𝟏

𝟏

 𝒈𝟏 𝒈𝟐 𝒈𝟑 𝒈𝟒 𝒈𝟓

• 𝒎𝒊
𝒋 is an instruction in the test case

– 𝒊 = 𝟏,𝟐, …𝑵 is the index (relative order) of the instruction,
– 𝒋 = 𝟎,𝟏 if the given instruction triggers (or not) any interaction

• A group consists of all subsequent 𝒎𝒊

𝒋 for which ∑ 𝒋 ≤ 𝟏

Algorithm

SIMULATION

Normal mode: execute test case and mark instructions that trigger
interaction based on the deployment diagram
Interleaving mode: automatically generate and execute all interleavings

PragmaDev Co-Simulator

Example
• Access system has

terminals and a central
unit
– Terminal has a slot for the

card and a keypad for the
key

– Central unit checks
whether access should be
granted to a user

• A user can be either

administrator or normal

Example
• Test case: try to get in and out of administrator

mode
– 1 interleaving point; 2 groups
– 2 terminals; 6 interleavings to execute
– not much to expect, however…
– one terminal blocked indefinitely waiting for a reply

from the central unit!

• Other 4 problems with the system were identified
in the same way

Conclusions
• The algorithm may not always produce significantly

less interleavings
– Degree of interaction between nodes
– High degree is more an exception than the rule

• Successful application of the approach with a simple

example
– Working on more complex systems

• The approach is based on simulation

– Cannot be applied (at present) for test cases on real target

THANK YOU!
Questions?

	Automatic Interleaving for Testing Distributed Systems
	Introduction
	Motivation
	technology
	Structure & Behavior
	Deployment & Test
	interleaving
	Problem
	Solution
	Algorithm
	simulation
	PragmaDev Co-Simulator
	Example
	Example
	Conclusions
	Thank you!

